Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.504
Filter
1.
BMC Cancer ; 24(1): 444, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600507

ABSTRACT

BACKGROUND: Transforming growth factor-ß (TGF-ß) is a cytokine with multiple functions, including cell growth regulation, extracellular matrix production, angiogenesis homeostasis adjustment and et al. TGF-ß pathway activation promotes tumor metastasis/progression and mediates epithelial-mesenchymal transmission suppressing immunosurveillance in advanced tumors. GFH018, a small molecule inhibitor blocking TGF-ß signal transduction, inhibits the progression and/or metastasis of advanced cancers. This first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and efficacy of GFH018 monotherapy in patients with advanced solid tumors. METHODS: This phase I, open-label, multicenter study used a modified 3+3 dose escalation and expansion design. Adult patients with advanced solid tumors failing the standard of care were enrolled. Starting at 5 mg, eight dose levels up to 85 mg were evaluated. Patients received GFH018 BID (14d-on/14d-off) starting on the 4th day after a single dose on cycle 1, day 1. Subsequent cycles were defined as 28 days. The study also explored the safety of 85 mg BID 7d-on/7d-off. Adverse events were graded using NCI criteria for adverse events (NCI-CTCAE v5.0). PK was analyzed using a noncompartmental method. Efficacy was evaluated using RECIST 1.1. Blood samples were collected for biomarker analysis. RESULTS: Fifty patients were enrolled and received at least one dose of GFH018. No dose-limiting toxicity occurred, and the maximum tolerated dose was not reached. Forty-three patients (86.0%) had at least one treatment-related adverse event (TRAE), and three patients (6.0%) had ≥ G3 TRAEs. The most common TRAEs (any grade/grade ≥3) were AST increased (18%/0%), proteinuria (14%/2%), anemia (14%/2%), and ALT increased (12%/0%). No significant cardiotoxicity or bleeding was observed. GFH018 PK was linear and dose-independent, with a mean half-life of 2.25-8.60 h from 5 - 85 mg. Nine patients (18.0%) achieved stable disease, and one patient with thymic carcinoma achieved tumor shrinkage, with the maximum target lesion decreased by 18.4%. Serum TGF-ß1 levels were not associated with clinical responses. The comprehensive recommended dose for Phase II was defined as 85 mg BID 14d-on/14d-off. CONCLUSIONS: GFH018 monotherapy presented a favorable safety profile without cardiac toxicity or bleeding. Modest efficacy warrants further studies, including combination strategies. TRIAL REGISTRATION: ClinicalTrial. gov ( https://www. CLINICALTRIALS: gov/ ), NCT05051241. Registered on 2021-09-02.


Subject(s)
Neoplasms , Receptors, Transforming Growth Factor beta , Adult , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Response Evaluation Criteria in Solid Tumors , Transforming Growth Factor beta , Receptors, Transforming Growth Factor beta/antagonists & inhibitors
2.
Drug Discov Today ; : 103991, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663578

ABSTRACT

The development of vaccines has had a crucial role in preventing and controlling infectious diseases on a global scale. Innovative formulations of biomimetic vaccines inspired by natural defense mechanisms combine long-term antigen stability, immunogenicity, and targeted delivery with sustained release. Types of biomimetic nanoparticle (NP) include bacterial outer membrane vesicles (OMVs), cell membrane-decorated NPs, liposomes, and exosomes. These approaches have shown potential for cancer immunotherapy, and in antibacterial and antiviral applications. Despite current challenges, nanovaccines have immense potential to transform disease prevention and treatment, promising therapeutic approaches for the future. In this review, we highlight recent advances in biomimetic vaccine design, mechanisms of action, and clinical applications, emphasizing their role in personalized medicine, targeted drug delivery, and immunomodulation.

3.
Article in English | MEDLINE | ID: mdl-38664281

ABSTRACT

Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in clinical applications for the amelioration of immune disorders, including graft-versus-host disease (GvHD) and Crohn's disease. The immunosuppressive role of Programmed death-ligand 1 (PD-L1) in MSCs is pivotal, yet the regulatory mechanisms governing its expression remain to be fully elucidated. In this study, we explored the influence of paired-related homeobox (PRRX1), a determinant of multipotency and self-renewal in MSCs, on the expression of various surface antigens, notably PD-L1. Multiple isoforms of PRRX1 were found to augment the mRNA levels of MSC markers, such as CD26 and CD317, with all isoforms elevating PD-L1 expression at both mRNA and protein levels. This study reveals that PRRX1 may act as a potential immunomodulatory factor in MSCs by regulating the PD-L1 pathway.

4.
Transpl Int ; 37: 12475, 2024.
Article in English | MEDLINE | ID: mdl-38665475

ABSTRACT

An increasing number of sensitized patients awaiting transplantation face limited options, leading to fatalities during dialysis and higher costs. The absence of established evidence highlights the need for collaborative consensus. Donor-specific antibodies (DSA)-triggered antibody-mediated rejection (AMR) significantly contributes to kidney graft failure, especially in sensitized patients. The European Society for Organ Transplantation (ESOT) launched the ENGAGE initiative, categorizing sensitized candidates by AMR risk to improve patient care. A systematic review assessed induction and maintenance regimens as well as antibody removal strategies, with statements subjected to the Delphi methodology. A Likert-scale survey was distributed to 53 European experts (Nephrologists, Transplant surgeons and Immunologists) with experience in kidney transplant recipient care. A rate ≥75% with the same answer was considered consensus. Consensus was achieved in 95.3% of statements. While most recommendations aligned, two statements related to complement inhibitors for AMR prophylaxis lacked consensus. The ENGAGE consensus presents contemporary recommendations for desensitization and immunomodulation strategies, grounded in predefined risk categories. The adoption of tailored, patient-specific measures is anticipated to streamline the care of sensitized recipients undergoing renal allografts. While this approach holds the promise of enhancing transplant accessibility and fostering long-term success in transplantation outcomes, its efficacy will need to be assessed through dedicated studies.


Subject(s)
Consensus , Delphi Technique , Graft Rejection , Kidney Transplantation , Humans , Graft Rejection/prevention & control , Graft Rejection/immunology , Europe , Isoantibodies/immunology , Transplant Recipients
5.
Heliyon ; 10(7): e29332, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623256

ABSTRACT

As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.

6.
Microb Cell ; 11: 106-115, 2024.
Article in English | MEDLINE | ID: mdl-38638559

ABSTRACT

Gut microbiota has complex immune functions, related to different pathologies, including multiple sclerosis (MS).This study evaluated the influence of treatments on gut microbiota in people with MS (PwMS). The research comprised 60 participants, including 39 PwMS and 21 healthy controls (HC). Among the PwMS, 20 were prescribed a disease-modifying therapy (DMT), either interferon beta1a or teriflunomide, while 19 received a combination of classical DMT and an immunoglobulin Y (IgY) supplement. For each participant, two sets of gut samples were collected: one at the study's outset and another after two months. Alpha and beta diversity analyses revealed no significant differences between groups. In comparison to the HC, the MS group exhibited an increase in Prevotella stercorea and a decrease in Faecalibacterium prausnitzii. Following treatment, individuals with MS showed enrichment in Lachnospiraceae and Streptococcus. The second sample, compared to the first one, demonstrated an increase in Bifidobacterium angulatum and a decrease in Oscillospira for individuals with MS. Gut microbiota diversity in PwMS is not significantly different to HC.However, specific taxonomic changes indicate the presence of a dysbiosis state. The use of DMTs and immunoglobulin Y supplements may contribute to alterations in microbial composition, potentially leading to the restoration of a healthier microbiome.

7.
Front Microbiol ; 15: 1381401, 2024.
Article in English | MEDLINE | ID: mdl-38655088

ABSTRACT

Background: Cystic echinococcosis, caused by the larval stage of Echinococcus granulosus, remains a global health challenge. Mesenchymal stem cells (MSCs) are renowned for their regenerative and immunomodulatory properties. Given the parasite's mode of establishment, we postulate that MSCs likely play a pivotal role in the interaction between the parasite and the host. This study aims to explore the response of MSCs to antigens derived from Echinococcus granulosus, the etiological agent of hydatid disease, with the hypothesis that exposure to these antigens may alter MSC function and impact the host's immune response to the parasite. Methods: MSCs were isolated from mouse bone marrow and co-cultured with ESPs, HCF, or pLL antigens. We conducted high-throughput sequencing to examine changes in the MSCs' mRNA expression profile. Additionally, cell cycle, migration, and secretory functions were assessed using various assays, including CCK8, flow cytometry, real-time PCR, Western blot, and ELISA. Results: Our analysis revealed that hydatid antigens significantly modulate the mRNA expression of genes related to cytokine and chemokine activity, impacting MSC proliferation, migration, and cytokine secretion. Specifically, there was a downregulation of chemokines (MCP-1, CXCL1) and pro-inflammatory cytokines (IL-6, NOS2/NO), alongside an upregulation of anti-inflammatory mediators (COX2/PGE2). Furthermore, all antigens reduced MSC migration, and significant alterations in cellular metabolism-related pathways were observed. Conclusion: Hydatid disease antigens induce a distinct immunomodulatory response in MSCs, characterized by a shift towards an anti-inflammatory phenotype and reduced cell migration. These changes may contribute to the parasite's ability to evade host defenses and persist within the host, highlighting the complex interplay between MSCs and hydatid disease antigens. This study provides valuable insights into the pathophysiology of hydatid disease and may inform the development of novel therapeutic strategies.

8.
Front Pharmacol ; 15: 1339406, 2024.
Article in English | MEDLINE | ID: mdl-38659573

ABSTRACT

Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.

9.
Sci Rep ; 14(1): 9084, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643332

ABSTRACT

Immunomodulatory properties of mesenchymal stem cells are widely studied, supporting the use of MSCs as cell-based therapy in immunological diseases. This study aims to generate cell-free MSC extract and improves their immunomodulatory potential. Intracellular extracts were prepared from adipose-derived stem cells (ADSC) spheroid via a freeze-thawing method. The immunomodulatory capacities of ADSC spheroid extracts were investigated in vitro, including lymphocyte proliferation, T regulatory cell expansion, and macrophage assays. A comparative study was conducted with ADSC monolayer extract. The key immunomodulatory mediators presented in ADSC extract were identified. The results revealed that ADSC spheroid extract could suppress lymphocyte activation while enhancing T regulatory cell expansion. Immunomodulatory molecules such as COX-2, TSG-6, and TGF-ß1 were upregulated in ADSC priming via spheroid culture. Selective inhibition of COX-2 abrogates the effect of ADSC extract on inducing T regulatory cell expansion. Thus, ADSC spheroid extract gains high efficacy in regulating the immune responses which are associated in part by COX-2 generation. Furthermore, ADSC spheroid extract possessed a potent anti-inflammation by manipulation of TNF-α production from LPS-activated macrophage. Our current study has highlighted the opportunity of using cell-free extracts from adipose tissue-derived mesenchymal stem cells spheroid as novel immunomodulators for the treatment of immunological-associated diseases.


Subject(s)
Immunosuppression Therapy , Stem Cells , Cell Extracts , Cyclooxygenase 2 , Adipose Tissue
10.
Cureus ; 16(3): e56704, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646383

ABSTRACT

This systematic review aims to compare the efficacy and safety of a novel immunotherapy with low-dose interleukin 2 (IL2) across two of the most prevalent autoimmune diseases i.e. systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Contemporary therapeutic practices have not been able to achieve complete remission from these autoimmune disorders. In contrast, low-dose IL2 has shown promise in achieving this therapeutic goal via inducing self-tolerance in patients with autoimmune diseases; however, due to variable irregularities among autoimmune processes of variable diseases, the benefit of low-dose IL2 could not be determined among different autoimmune diseases. Therefore, we conducted a study to compare low-dose IL2 therapy effects on SLE and RA. We systematically screened four databases: PubMed, Medical Literature Analysis and Retrieval System Online (MEDLINE), PubMed Central (PMC), and Google Scholar. Inclusion and exclusion criteria were implemented. Quality appraisal of studies chosen for the review was done using the Cochrane Risk-of-Bias (RoB) assessment tool for randomized controlled trials, and the Newcastle-Ottawa Scale (NOS) and JBI critical appraisal tool for non-randomized clinical trials. Information was gathered from seven articles: three randomized controlled trials and four non-randomized clinical trials. Our review concluded that low-dose IL2 therapy in conjunction with respective standard therapies for SLE and RA has a higher efficacy and safety profile as compared to standard therapy alone and the therapeutic effects were comparable in both SLE and RA patients treated with low-dose IL2; however, this novel intervention does not seem to have a significant corrective effect on the biomarkers of RA as it does for SLE biomarkers.

11.
Antibiotics (Basel) ; 13(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667018

ABSTRACT

OBJECTIVE: To evaluate the in vitro antimicrobial and antibiofilm properties and the immune modulatory activity of cannabidiol (CBD) and cannabigerol (CBG) on oral bacteria and periodontal ligament fibroblasts (PLF). METHODS: Cytotoxicity was assessed by propidium iodide flow cytometry on fibroblasts derived from the periodontal ligament. The minimum inhibitory concentration (MIC) of CBD and CBG for S. mutans and C. albicans and the metabolic activity of a subgingival 33-species biofilm under CBD and CBG treatments were determined. The Quantification of cytokines was performed using the LEGENDplex kit (BioLegend, Ref 740930, San Diego, CA, USA). RESULTS: CBD-treated cell viability was greater than 95%, and for CBG, it was higher than 88%. MIC for S. mutans with CBD was 20 µM, and 10 µM for CBG. For C. albicans, no inhibitory effect was observed. Multispecies biofilm metabolic activity was reduced by 50.38% with CBD at 125 µg/mL (p = 0.03) and 39.9% with CBG at 62 µg/mL (p = 0.023). CBD exposure at 500 µg/mL reduced the metabolic activity of the formed biofilm by 15.41%, but CBG did not have an effect. CBG at 10 µM caused considerable production of anti-inflammatory mediators such as TGF-ß and IL-4 at 12 h. CBD at 10 µM to 20 µM produced the highest amount of IFN-γ. CONCLUSION: Both CBG and CBD inhibit S. mutans; they also moderately lower the metabolic activity of multispecies biofilms that form; however, CBD had an effect on biofilms that had already developed. This, together with the production of anti-inflammatory mediators and the maintenance of the viability of mammalian cells from the oral cavity, make these substances promising for clinical use and should be taken into account for future studies.

12.
Cells ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667331

ABSTRACT

Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.


Subject(s)
Fusobacterium nucleatum , Pregnancy Outcome , Humans , Female , Fusobacterium nucleatum/pathogenicity , Pregnancy , Fusobacterium Infections/complications , Fusobacterium Infections/microbiology , Genital Diseases, Female/microbiology , Neoplasms/microbiology
13.
Mar Drugs ; 22(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667784

ABSTRACT

Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.


Subject(s)
Antineoplastic Agents , Antioxidants , Carotenoids , Neoplasms , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Carotenoids/pharmacology , Carotenoids/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Animals , Archaea/metabolism
14.
Pathogens ; 13(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38668250

ABSTRACT

This study investigated the dietary immunomodulatory effects of Terminalia arjuna bark powder (TABP) in Labeo rohita, a freshwater fish model. Four iso-nitrogenous and iso-caloric diets containing graded levels of TABP (0, 1, 10, and 15 g/kg were fed to fish for 90 days, followed by a 10 day challenge with pathogenic bacteria Aeromonas hydrophila and Edwardsiella tarda. An integrated biomarker response (IBR) approach assessed the impact of TABP on hematological, adaptive, and humoral immune parameters, along with liver histomorphology. Dietary TABP at 10 g/kg significantly enhanced (p < 0.05) hematological indices (hemoglobin, red blood cell count, hematocrit), specific immune parameters (lysosomal enzyme activity, phagocytosis, respiratory burst), and non-specific immune parameters (serum lysozyme, alternative complement activity), and exhibited improvements in liver architecture consistent with the enhanced immune response. Broken line regression analysis showed 11.5 g/kg to be an optimum dose. However, at 15 g/kg, a compromised trend was observed in some parameters. These findings suggest an optimal dosage range for TABP's immunomodulatory effects. The study highlights the potential of TABP as a natural immunomodulator in fish aquaculture. The improved immune response and concomitant liver health observed in Labeo rohita opens avenues for further research on TABP's applicability in animal health, using fish as a model organism. Additionally, the IBR approach proved effective in evaluating TABP's immunomodulatory properties, paving the way for similar studies on other natural products in aquaculture.

15.
Front Immunol ; 15: 1360065, 2024.
Article in English | MEDLINE | ID: mdl-38558823

ABSTRACT

Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.


Subject(s)
Mitochondria , Polyphenols , Humans , Polyphenols/pharmacology , Mitochondria/metabolism , Immune System/metabolism , Inflammation/metabolism , Adipose Tissue/metabolism
16.
Mol Immunol ; 170: 99-109, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643690

ABSTRACT

Macrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5'-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions. In this light, a cell model of LPS-stimulated macrophages has been established and nine 4,7-dihydro-4-ethylpyrazolo[l,5-a]pyrimidin-7-ones with a potential anti-inflammatory effect have been administered. Our data highlight that two selected compounds (namely, 5 and 8) inhibit the LPS-induced Nrf2 nuclear translocation and ameliorate the activity rate of the antioxidant enzyme catalase. Additionally, the pyridine-containing compound (8) promotes the shift from the pro-inflammatory immunophenotype M1 to the pro-resolving M2 one, by downregulating CD80 and iNOS and by enhancing CD163 and TGFß1 expression. Most importantly, CD73 is modulated by these compounds as well as the lactate production. Our data demonstrate that pyrazolo[l,5-a]pyrimidine derivatives are effective as anti-inflammatory compounds. Furthermore, these pyrazolo[l,5-a]pyrimidines exert their action via CD73-related signaling and modulation of cell metabolism of activated macrophages.

18.
Article in English | MEDLINE | ID: mdl-38588999

ABSTRACT

The aim of this article is to report clinical features and therapeutic approach of cicatrizing keratoconjunctivitis secondary to ocular lichen planus based on a case report. The patient is a 77-year-old female with a history of ocular discomfort and recurrent keratoconjunctivitis that did not improve with conservative treatment, as well as a history of oral and nasal aphthous ulcers. After a complete ophthalmologic, dermatologic and anatomopathological study, the diagnosis of ocular lichen planus was established and immunosuppressive treatment was initiated. Most cases of ocular lichen planus are presented as chronic cicatricial conjunctivitis. A correct differential diagnosis, as well as an early detection are essential for the control of this entity and its sequelae. Treatment, based on corticosteroids and immunosuppressants, both topical and systemic, is aimed at controlling inflammation and scarring.

19.
Med Oncol ; 41(5): 115, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622289

ABSTRACT

Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India's traditional medical system, Ayurveda, where it is recognized as a "medhya rasayana"-a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa's potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP's immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.


Subject(s)
Bacopa , Carcinoma, Ductal , Neoplasms , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Histones , Cytokines
20.
Parasite Immunol ; 46(4): e13034, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38625016

ABSTRACT

Scavenger receptors participate in a wide range of biological functions after binding to multiple non-self or altered self-ligands. Among them, CD5 and CD6 are lymphocyte scavenger receptors known to interact with different microbial-associated molecular patterns, and the administration of the recombinant soluble ectodomains of human CD5 (rshCD5) and/or CD6 (rshCD6) has shown therapeutic/prophylactic potential in experimental models of fungal, bacterial and echinococcal infections. The latter is a zoonosis caused by the larval stage of the cestode parasite Echinococcus granulosus sensu lato, which in humans can induce secondary cystic echinococcosis (CE) after the spillage of protoscoleces contained within fertile cysts, either spontaneously or during surgical removal of primary hydatid cysts. Herein, we have analysed the mechanisms behind the significant protection observed in the mouse model of secondary CE following prophylactic administration of rshCD5 or rshCD6. Our results show that both molecules exhibit intrinsic antiparasitic activities in vitro, as well as immunomodulatory functions during early secondary CE, mainly through Th1/Th17 cytokine bias and promotion of peritoneal polyreactive antibodies. These data support the relevance of the parasite components bound by rshCD5 and rshCD6, as well as the potential of their prophylactic administration as a useful strategy to reduce secondary CE in patients.


Subject(s)
Anti-Infective Agents , Echinococcosis , Animals , Mice , Humans , Antiparasitic Agents , Zoonoses , Receptors, Scavenger
SELECTION OF CITATIONS
SEARCH DETAIL
...